Advances in Targeted Therapies for Lung Cancer

Alice T. Shaw, MD PhD March 11, 2016

Overview

- Introduction to Lung Cancer
- First Generation Targeted Therapies
- Second Generation Targeted Therapies
- Evolution of Resistance
- Summary and Future Directions

Overview

Introduction to Lung Cancer

- First Generation Targeted Therapies
- Second Generation Targeted Therapies
- Evolution of Resistance
- Summary and Future Directions

Lung Cancer is the Leading Cause of Cancer Deaths Worldwide

INCIDENCE

MORTALITY

WHO IARC, January 2014

Lung Cancer Occurs in Never Smokers

Deweerdt, S., Nature 513: S12-3, 2014

Lung Cancer Is Often Diagnosed at an Advanced Incurable Stage

2004-2010, SEER Cancer Statistics Review

Standard Chemotherapy Provides Modest Benefit in Lung Cancer

Overall survival ~12 mos

Limited Benefit of Second-Line Chemotherapy

Progression-Free Survival (months)

Overall survival ~8 mos

Hanna et al., JCO 22(9): 1589-1597, 2004

A New View of Lung Cancer

Molecular Classification of Lung Cancer Oncogenic Drivers

Oncogenic Drivers Confer Sensitivity to Targeted Therapies: Oncogene Addiction

ROS1+ NSCLC

Pre-Treatment

Crizotinib x 8 weeks

Impact of Matching Targets and Targeted Therapies: Improved Survival

- Introduction to Lung Cancer
- First Generation Targeted Therapies
- Second Generation Targeted Therapies
- Evolution of Resistance
- Summary and Future Directions

Clinical Activity of an EGFR Inhibitor Leads to Discovery of Oncogenic EGFR Mutations

After 6 weeks of gefitinib

Baseline

Lynch et al., NEJM 350: 2129-39, 2004

Mutant EGFR is Effectively Inhibited by Gefitinib and Other EGFR Inhibitors

EGFR Inhibitors are Effective in Patients Harboring Mutant EGFR But Not Wildtype EGFR

Odds ratio >1 implies greater chance of response on gefitinib

Mok et al., NEJM 361:947-57, 2009

EGFR Inhibitors are Standard First-Line Therapies for Patients with Sensitizing EGFR Mutations

			RR	(%)	Median F	PFS (mo)	Median	OS (mo)
Country	Trial	Agent	ткі	Chemo	ТКІ	Chemo	ткі	Chemo
	IPASS Mut +	gefitinib	71.2	47.3	9.5	6.3	21.6	21.9
# • #	First-SIGNAL Mut +	gefitinib	84.6	37.5	8.4	6.7	30.6	26.5
	WJTOG	gefitinib	62.1	32.2	9.2	6.3	30.9	NR
*3	NEJ002	gefitinb	73.7	30.7	10.8	5.4	27.7	26.6
	OPTIMAL	erlotinib	83	36	13.7	4.6	22.6	28.8
<u>**</u>	EURTAC	erlotinib	58	15	9.7	5.2	19.3	19.5
S.	LUX-Lung 3	afatinib	56.1	22.6	11.1	6.9	NR	NR
thins and	LUX-Lung 6	afatinib	66.9	23.0	11.0	5.6	NR	NR

ARTICLES

Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer

Manabu Soda^{1,2}, Young Lim Choi¹, Munehiro Enomoto^{1,2}, Shuji Takada¹, Yoshihiro Yamashita¹, Shunpei Ishikawa⁵, Shin-ichiro Fujiwara¹, Hideki Watanabe¹, Kentaro Kurashina¹, Hisashi Hatanaka¹, Masashi Bando², Shoji Ohno², Yuichi Ishikawa⁶, Hiroyuki Aburatani^{5,7}, Toshiro Niki³, Yasunori Sohara⁴, Yukihiko Sugiyama² & Hiroyuki Mano^{1,7}

Crizotinib Was Initially Developed to Target a Different Kinase CMET

Crizotinib Inhibits Multiple Kinase Targets Including ALK

Kinase	IC ₅₀ (nM) mean*	Selectivity ratio
c-MET	8	-
ALK	40-60	5-8X
ROS	60	7X
RON	80	10X
Avi	294	34X
	322	37X
Tie-2	448	52X
Trk A	580	67X
Trk B	399	46X
Abl	1,159	166X
IRK	2,887	334X
Lck	2,741	283X
Sky	>10,000	>1,000X
VEGFR2	>10,000	>1,000X
PDGFRβ	>10,000	>1,000X

Cui et al. J. Med. Chem. 54:6342-63, 2011 and Pfizer data on file

Study Design of Phase 1 Trial of Crizotinib

Kwak et al. NEJM 363:1693-1703, 2010

The Key: Finding the Right Patient

Patients screened: 1500 ALK-positive patients: 82

ALK break-apart FISH assay [Courtesy John lafrate, Massachusetts General Hospital]

Clinical and Diagnostic Features of ALK-Rearranged Lung Cancer

Adenocarcinoma

ALK IHC (FDA approved)

ALK FISH (FDA approved)

ALK Rearrangement Confers Marked Sensitivity to Crizotinib

Pre-Treatment

Crizotinib x 12 weeks

Activity of Crizotinib Established in a Molecularly Defined Subset of NSCLC

Crizotinib is a Standard Therapy for Patients with Metastatic ALK+ NSCLC

	PROFILE 1001 ¹ (N=143)	PROFILE 1005 ² (N=259)	PROFILE 1007 ³ (N=172)	PROFILE 1014⁴ (N=172)
Phase	1	2	3	3
Line of therapy	Any line	2 nd line and beyond	2 nd line	1 st line
Response rate	61%	60%	65%	74%
PFS, median (mos)	9.7	8.1	7.7	10.9
Survival probability at 12 mos	75%	NA	70%	84%

¹Camidge et al., Lancet Onc 13(10): 1011-9, 2012 ²Kim et al., ASCO 2012 ³Shaw et al., NEJM 368(25): 2385-94 , 2013 ⁴Solomon et al., NEJM 371(23): 2167-77, 2014

Matching Targets with Targeted Therapies in Advanced Lung Cancer

- Introduction to Lung Cancer
- First Generation Targeted Therapies
- Second Generation Targeted Therapies
- Evolution of Resistance
- Summary and Future Directions

Almost All Patients Develop Resistance to Targeted Therapies Over Time

Baseline

After 8 weeks of crizotinib

After 34 months of crizotinib

Mechanisms of Resistance to 1st Generation EGFR Inhibitors

Yu H A et al. Clin Cancer Res 19:2240-2247, 2013

The 3rd Generation Inhibitor AZD9291 (Osimertinib) Is A T790M Mutant-Selective EGFR Inhibitor

		H1975 (T790M/L858R)	PC-9 VanR (ex19del/T790M)	PC-9 (ex19del)	Calu 3 (WT)	NCI-H2073 (WT)
3rd	AZD9291	11 (6, 19)	40 (30, 54)	8 (7, 9)	650 (457, 924)	461 (230, 924)
2nd -	Dacomitinib	335 (265, 424)	531 (465, 607)	0.4 (0.3, 1)	65 (37, 116)	54 (ND)
	Afatinib	483 (403, 579)	679 (532, 868)	0.8 (0.7, 0.9)	71 (35, 144)	30 (9, 99)
1 ot	Gefitinib	6962 (6304, 7688)	4232 (1998, 8965)	23 (20, 25)	1933 (1299, 2876)	200 (41, 974)
1st -	Erlotinib	6165 (5392, 7050)	5778 (4766, 7029)	28 (22, 36)	4101 (2732, 6156)	692 (193, 2478)

Osimertinib Binds to EGFR T790M Via Cys797

Cross et al., Canc Discovery 4: 1046-61, 2014

Third Generation EGFR T790M Inhibitors Can Overcome T790M-Mediated Resistance

- Confirmed ORR in patients with centrally tested T790M+ tumours was 61% (78/127; 95% CI 52%, 70%)
- Disease control rate (CR+PR+SD) was 95% (121/127; 95% CI 90%, 98%)
- Median PFS 9.6 mos (95% CI 8.3 NR)

Yang et al., ESMO 2014 Janne et al., NEJM 2015

Sequential EGFR Inhibitor Therapy in Patients Who Relapse due to T790M

Multiple Secondary ALK Mutations Can Mediate Resistance to Crizotinib

• F1174C/V

Modified from Lovly and Pao, Sci Transl Med 4(120): 120ps2, 2012

Less Than 30% of Crizotinib-Resistant Tumors Harbor Secondary ALK Resistance Mutations

Next Generation ALK Inhibitors

ALK TKI	ROS1 activity	Status	Ongoing Studies	
Ceritinib	Yes	FDA Approved (4-29-2014)	Phase 3 (vs chemo)	
Alectinib	No	Approved in Japan (7-4-2014) FDA Approved (12-11-15)	Phase 3 (vs crizotinib)	
Brigatinib	Yes	Investigational FDA Breakthrough Therapy	Phase 2 (90 vs 180 mg)	
X-396	Yes	Investigational	Phase 1/2	
Entrectinib	Yes	Investigational	Phase 2	
CEP-37440	Unk	Investigational	Phase 1	
Lorlatinib	Yes	Investigational	Phase 2	

First and Next Generation ALK Inhibitors

Marsilje et al., J Med Chem 56:5675-90, 2013; Johnson et al., J Med Chem 57:4720-44, 201

Next Generation ALK Inhibitors Can Induce Rapid Responses in Crizotinib-Resistant Patients

Next Generation ALK Inhibitors Induce Durable Responses in Most Crizotinib-Resistant, ALK+ NSCLC Patients

Next Generation Inhibitors are Active Against Tumors Without ALK Resistance Mutations

Current Treatment Strategy for Metastatic ALK+ NSCLC

Acquired Resistance to Next Generation ALK Inhibitors

Baseline

After 8 weeks

of crizotinib

After 34 months

of crizotinib

After 12 weeks of ceritinib

After 15 months of ceritinib

Friboulet et al., Cancer Discov 4(6): 662-73, 2014

Shifting Profile of ALK Resistance Mutations Depending on the ALK Inhibitor

Shifting Profile of ALK Resistance Mutations Depending on the ALK Inhibitor

Lorlatinib is a Highly Potent, CNS Penetrant ALK/ROS1 TKI

PF-06463922/L1196M-ALK bound structure	$F \xrightarrow{Cl} NH$ $F \xrightarrow{Cl} NN$ $H_2N \xrightarrow{N} N$	F H_2N N N N
	crizotinib	PF-06463922
ALK WT NIH3T3 IC50 (nM)	80	1.3
ALK L1196M NIH3T3 IC50 (nM)	843	21
ALK G1202R NIH3T3 IC50 (nM)	1148	77
ROS1-CD74 IC50 (nM)	11	0.24
MDR BA/AB	45	1.5

Johnson et al., J Med Chem 57: 4720-4, 2014

Clinical Activity of Lorlatinib in ALK- and ROS1-Rearranged NSCLC

PD occurred in 14 patients: new lesions (n=8), non-target lesions (n=2), both new and non-target lesions (n=4).

PD=progressive disease; R=ROS1+; ROS1=c-ros oncogene 1; TKI=tyrosine kinase inhibitor

Bauer et al., WCLC 2015

Lorlatinib Can Overcome the ALK G1202R Resistance Mutation

Patient 1: ALK⁺ NSCLC Previously treated with crizotinib and ceritinib Local molecular testing after ceritinib with ALK G1202R Started Iorlatinib at 75 mg QD Dose reduced to 50 mg QD Ongoing at >12 months

Patient 2: ALK⁺ NSCLC Previously treated with crizotinib and brigatinib Local molecular testing after brigatinib with ALK G1202R Started Iorlatinib at 200 mg QD Dose reduced to 100 mg QD Ongoing at >8 months

Current Treatment Strategy for Metastatic ALK+ NSCLC

Overview

- Introduction to Lung Cancer
- First Generation Targeted Therapies
- Second Generation Targeted Therapies
- Evolution of Resistance
- Summary and Future Directions

Serial Biopsies Reveal Dynamic Populations of Different Tumor Clones

Histology	Adeno	Ade	eno		Adeno
Genotype	L858R TP53	L85 TP T79	8R 53 0M		L858R TP53
EGFR TKI status	Sensitive	Resis	stant		Sensitive
Tumor Burden					
Treatment	Chemo Erlotir	nib	Chemo	Chemo	Erlotinib*
Timeline	2007	2008	2009		2010
Histology	Adeno		SCLC	Adeno	SCLC
Genotype	L858R		L858R PIK3CA	L858R	L858R PIK3CA
EGFR TKI status	Sensitive		Resistant	Sensitive	Resistant
Tumor Burden					
Treatment	Erlotinib		C+RT	Erl	otinib C+ RT
Timeline	2008	2009		201	0

Sequist et al, Sci Transl Med 2011

Heterogeneity of Resistance Mechanisms Discovered at Autopsy

Sample	Normal Liver	Diaphragm Tumor	Lung Tumor	Liver Tumor
Histological Features	Normal Tissue	Adenocarcinoma	SCLC	SCLC
Number of Reads	179,298,190	350,864,233	388,189,232	318,482,313
Average Coverage	146	287	319	253
Primary EGFR Mutation	WT	L858R	L858R	L858R
Secondary EGFR Mutation	WT	T790M	WT	WT
PIK3CA Status	WT	WT	E545K	E545K
TP53 Status	WT	WT/Δ154-163	-/∆154-163	-/Δ154-163
<i>RB1</i> status	WT	WT	-/-	-/-

Niederst et al., Nat Commun 6: 6377, 2015

Longitudinal Evolution of Resistance in ALK+ NSCLC

Crizotinib	Ceritinib	Lorlatinib
S12	† 206Y G12	202R

Crizotinib	Ceritinib	Lorlatinib	Crizotinib	
	↑	1		
C1 ²	56Y	C1156Y		
			-	
		L1198F		

Structural Basis for ALK L1198F-Mediated Resistance to Lorlatinib and Sensitivity to Crizotinib

The Selective Pressure of Each ALK Inhibitor Shapes the Longitudinal Evolution of Resistance

Summary

- All patients with newly diagnosed metastatic lung cancer should undergo multiplex molecular testing
- For patients with oncogene-addicted lung cancers, targeted therapies have transformed the natural history of disease
- Essentially all patients will develop resistance to targeted therapies over time
- There are new and emerging treatment strategies for patients who relapse on targeted therapies; these will be most effective when tailored based on the underlying resistance mechanism

Adapted from Nature 513: S8-9, 2014

Future Directions

- Liquid biopsies (ie blood-based assays of circulating tumor DNA) to allow noninvasive, dynamic monitoring of response and resistance in real time
- Combinations of ALK inhibitors and other targeted agents to overcome resistance due to off-target mechanisms
- Upfront drug combinations, possibly in an intercalated manner, to prevent the emergence of resistant clones
- Multimodality treatment regimens involving targeted therapies, local therapies like radiation, and even immune or vaccine-based strategies

Acknowledgments

MGH Cancer Center Jeffrey Engelman Ryohei Katayama Luc Friboulet **Justin Gainor** Adam Crystal Tahsin Khan Jen Logan Lecia Sequist Jennifer Temel Rebecca Heist Jerry Azzoli Anna Farago Inga Lennes Mark Awad Pat Ostler McCarthy Ally Wanat Lisa Stober Kate Parhiala **Beth Kennedy** Kate Schultz

MGH Pathology

John lafrate Mari Mino-Kenudson Dora Dias-Santagata Amanda Pawlak

Broad

Gaddy Getz Ignaty Leschiner

Patients and Families

Study sponsors

Pfizer Novartis Roche Ariad

Funding

The V Foundation NIH/NCI (R01CA164273) Uniting Against Lung Cancer National Foundation for Cancer Research MGH Thoracic Oncology MGH Pathology Be a Piece of the Solution Evan Spirito Memorial Foundation

